Table 1

Elements of the Annular Solar Eclipse of 2012 May 20

Equatorial Conjunction:	00:00:16.01 TDT	J.D. $=2456068.500185$
(Sun \& Moon in R.A.)	(=23:59:09.29 UT)	
Ecliptic Conjunction:	23:48:07.87 TDT	J.D. $=2456068.491758$
(Sun \& Moon in Ec. Lo.)	(=23:47:01.15 UT)	
Instant of	23:53:53.39 TDT	J.D. $=2456068.495757$
Greatest Eclipse:	($=23: 52: 46.68$ UT)	

Geocentric Coordinates of Sun \& Moon at Greatest Eclipse (JPL DE200/LE200):

```
Sun: R.A. = 03h52m43.048s
            Dec. =+20'13'15.15"
        Semi-Diameter = 15'48.11'
        Eq.Hor.Par. = 08.69"
            \Delta R.A. = 10.029s/h
            \Delta Dec. = 30.26"/h
```

 Moon: R.A. \(=03 \mathrm{~h} 52 \mathrm{~m} 30.731 \mathrm{~s}\)
 Dec. \(=+20^{\circ} 39^{\prime} 06.32^{\prime \prime}\)
 \(\begin{array}{rr}\text { Semi-Diameter }= & 14^{\prime \prime} 43.35^{\prime \prime} \\ \text { Eq.Hor.Par. } & 0^{\circ} 54^{\prime} 01.67^{\prime \prime}\end{array}\)
 \(\begin{array}{rr}\text { Semi-Diameter } & =14^{\prime 4} 43.35^{\prime \prime} \\ \text { Eq. Hor.Par. } & 0{ }^{\circ} 54^{\prime} 01.67^{\prime \prime}\end{array}\)
 \(\Delta\) R.A. \(=125.927 \mathrm{~s} / \mathrm{h}\)
 \(\Delta\) Dec. \(=211.621 / \mathrm{h}\)
 Lunar Radius $\quad \mathrm{k} 1=0.2725076$ (Penumbra) Shift in $\quad \Delta \mathrm{b}=0.00^{\prime \prime}$
Constants: $\quad \mathrm{k} 2=0.2722810$ (Umbra) Lunar Position: $\Delta l=0.00^{\prime \prime}$

Geocentric Libration:	$l=-1.3^{\circ}$
(Optical + Physical $)$	
	$\mathrm{b}=-0.6^{\circ}$
	$\mathrm{c}=-13.7^{\circ}$

 Brown Lun. No. = 1106
 (Optical + Physical) $\quad b=-0.6^{\circ}$
Saros Series $=128$ (58/73)
nDot $=-26.00$ "/cy**2
Eclipse Magnitude $=0.94389 \quad \underline{\text { Gamma }}=0.48279 \quad \underline{T}=\quad 66.7 \mathrm{~s}$
Polynomial Besselian Elements for: 2012 May 21 00:00:00.0 TDT ($=$ t $_{0}$)

n	x	y	d	l_{1}	12	μ
0	-0.0022373	0.4855297	20.2205563	0.5665071	0.0202486	180.856583
1	0.5031837	0.0560538	0.0082712	-0.0000312	-0.0000311	15.000578
2	0.0000183	-0.0001411	-0.0000047	-0.0000097	-0.0000097	-0.000002
3	-0.0000057	-0.0000006	0.0000000	0.0000000	0.0000000	0.000000

At time t_{1} (decimal hours), each Besselian element is evaluated by:

$$
a=a_{0}+a_{1} * t+a_{2} * t^{2}+a_{3} * t^{3} \quad\left(\text { or } a=\sum\left[a_{n} * t^{n}\right] ; n=0 \text { to } 3\right)
$$

where: $\quad a=x, y, d, l_{1}, l_{2}$, or μ
$t=t_{1}-t_{0}$ (decimal hours) and $t_{0}=0.00 \mathrm{TDT}$

The Besselian elements were derived from a least-squares fit to elements calculated at five uniformly spaced times over a 6 -hour period centered at t_{0}. They are valid over the period 21.00 (May 20) $\leq t_{1} \leq 03.00$ (May 21) TDT.

Note that all times are expressed in Terrestrial Dynamical Time (TDT).
Saros Series 128: Member 58 of 73 eclipses in series.
Eclipse Predictions by Fred Espenak, NASA’s GSFC (2012 May)

