The northern and southern umbral limits provided in this publication were derived using the Moon's center of mass and a mean lunar radius. They have not been corrected for the Moon's center of figure or the effects of the lunar limb profile. In applications where precise limits are required, Watt's limb data must be used to correct the nominal or mean path. Unfortunately, a single correction at each limit is not possible since the Moon's libration in longitude and the contact points of the limits along the Moon's limb each vary as a function of time and position along the umbral path. This makes it necessary to calculate a unique correction to the limits at each point along the path. Furthermore, the northern and southern limits of the umbral path are actually paralleled by a relatively narrow zone where the eclipse is neither penumbral nor umbral. An observer positioned here will witness a solar crescent which is fragmented into a series of bright beads and short segments whose morphology changes quickly with the rapidly varying geometry of the Moon with respect to the Sun. These beading phenomena are caused by the appearance of photospheric rays which alternately pass through deep lunar valleys and hide behind high mountain peaks as the Moon's irregular limb grazes the edge of the Sun's disk. The geometry is directly analogous to the case of grazing occultations of stars by the Moon. The graze zone is typically five to ten kilometers wide and its interior and exterior boundaries can be predicted using the lunar limb profile. The interior boundaries define the actual limits of the umbral eclipse (both total and annular) while the exterior boundaries set the outer limits of the grazing eclipse zone.

Table 6 provides topocentric data and corrections to the path limits due to the true lunar limb profile. At five minute intervals, the table lists the Moon's topocentric horizontal parallax, the semi-diameter, the relative angular velocity of the Moon with respect to the Sun and lunar libration in longitude. The center line altitude and azimuth of the Sun is given, followed by the azimuth of the umbral path. The position angle of the point on the Moon's limb which defines the northern limit of the path is measured counter-clockwise (i.e. - eastward) from the north point on the limb. The path corrections to the northern and southern limits are listed as interior and exterior components in order to define the graze zone. Positive corrections are in the northern sense while negative shifts are in the southern sense. These corrections [minutes of arc in latitude] may be added directly to the path coordinates listed in Table 3. Corrections to the center line umbral durations due to the lunar limb profile are also included and they are all negative. Thus, when added to the central durations given in Tables Table 3, Table 4, Table 5, and Table 7, a slightly shorter central annular phase is predicted.

Next section