|
|---|
Geocentric Conjunction 23:21:19.59 TDT J.D. = 2452967.473143
of Sun & Moon in R.A.: (=23:20:14.79 UT)
Instant of 22:50:21.65 TDT J.D. = 2452967.451639
Greatest Eclipse: (=22:49:16.85 UT)
Geocentric Coordinates of Sun & Moon at Greatest Eclipse (DE200/LE200):
Sun: R.A. = 15h56m23.195s Moon: R.A. = 15h55m07.521s
Dec. =-20°24´22.85" Dec. =-21°20´45.70"
Semi-Diameter = 16´11.82" Semi-Diameter = 16´44.76"
Eq.Hor.Par. = 08.91" Eq.Hor.Par. = 1°01´27.25"
Δ R.A. = 10.562s/h Δ R.A. = 157.138s/h
Δ Dec. = -30.99"/h Δ Dec. = -673.37"/h
Lunar Radius k1 = 0.2725076 (Penumbra) Shift in Δb = 0.00"
Constants: k2 = 0.2722810 (Umbra) Lunar Position: Δl = 0.00"
Geocentric Libration: l = 0.0° Brown Lun. No. = 1001
(Optical + Physical) b = 1.3° Saros Series = 152 (12/70)
c = 10.3° Ephemeris = (DE200/LE200)
Eclipse Magnitude = 1.03788 Gamma =-0.96381 ΔT = 64.8 s
Polynomial Besselian Elements for: 2003 Nov 23 23:00:00.0 TDT (=t0)
n x y d l1 l2 μ
0 -0.1979529 -0.9479029-20.4053841 0.5373482 -0.0087654 168.398682
1 0.5568983 -0.1739249 -0.0081768 -0.0000032 -0.0000032 14.998531
2 0.0000570 0.0001989 0.0000050 -0.0000131 -0.0000130 -0.000003
3 -0.0000094 0.0000031 0.0000000 0.0000000 0.0000000 0.000000
Tan f1 = 0.0047348 Tan f2 = 0.0047112
At time t1 (decimal hours), each Besselian element is evaluated by:
a = a0 + a1*t + a2*t2 + a3*t3 (or a = Σ [an*tn]; n = 0 to 3)
where: a = x, y, d, l1, l2, or μ
t = t1 - t0 (decimal hours) and t0 = 23.000 TDT
The Besselian elements were derived from a least-squares fit to elements
calculated at five uniformly spaced times over a six hour period
centered at t,0. Thus the elements are valid over the period
20.00 ≤ t0 ≤ 02.00 TDT (Nov 23 to Nov 24).
Note that all times are expressed in Terrestrial Dynamical Time (TDT).
Saros Series 152: Member 12 of 70 eclipses in series.
Table adapted from NASA TP 2002-211618 "Annular and Total Solar Eclipses of 2003."
Eclipse Predictions & WebMaster: Fred Espenak Planetary Systems Branch - Code 693 e-mail: espenak@gsfc.nasa.gov NASA's Goddard Space Flight Center, Greenbelt, Maryland 20771 USA
|
|---|